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Continuous and discrete frames on Julia sets
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Abstract

A frame is an overcomplete family of vectors in a Hilbert space in which the orthogonality
condition is relaxed. The Julia set is the chaotic regime of a rational function. In this note, we label
frames of an abstract Hilbert space by elements of the Julia set of a rational function.
© 2003 Elsevier B.V. All rights reserved.

MSC:Primary 42C40; 37F45

PACS:02.30; 05.45

JGP SC:Differential geometry

Keywords:Frames; Iteration; Julia set

1. Introduction

Hilbert spaces are the natural frame work for the mathematical version of many areas
of physics, predominantly quantum mechanics and signal and image analysis. Often the
main problem is to decompose an arbitrary vector in terms of simpler vectors. What are
these simpler vectors and how efficient are they? The natural choice for these vectors is
an orthonormal basis of the Hilbert space of the problem. In practice, orthonormal bases
are difficult to work with because they decompose the vector in a unique way. This lack of
flexibility was not welcomed by practitioners in the field. By giving up the orthogonality of
the basis vectors and thereby the uniqueness of the decomposition a more flexible alternative
was introduced in 1952 by Duffin and Schaeffer[8] in the context of non-harmonic Fourier
analysis. This alternative is called a frame.
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Iterations of rational functions on the Riemann sphere is another rapidly growing subject.
It was first studied by Fatou and Julia when they independently discovered the dichotomy
of the Riemann sphere into sets now bearing their names. For more information about
holomorphic dynamics, we refer the reader to Refs.[3,7,9]. Interesting links between holo-
morphic dynamics and other mathematical areas have been found, for instance, Kleinian
groups and number theory[7]. This motivates us to find a link between the two important
mathematical topics: frames and holomorphic dynamics.

In this note, we label frames of an abstract Hilbert space by elements of the Julia set
of a rational function. The paper is organized as follows. InSection 2, we present some
definitions from holomorphic dynamics. InSection 3, we recall the definition of a frame.
Then, we prove the main result of this note and present examples of rational functions
which satisfy our conditions. InSection 4, we obtain a resolution of the identity from
the frames which are labeled by the elements of a Julia set. A discrete frame on Julia set
is obtained inSection 5. In Section 6we present some results on Hilbert spaces using the
properties of Julia sets. InSection 7, we discuss possible applications of our problem to brain
imaging.

2. Holomorphic dynamics and the Julia set

In this section, we state some definitions and well known results which will be used in
the sequel. All the results can be found in the above references.

Definition 2.1. A family of analytic functions having a common domain of definition is
called normal if every sequence in this family contains a locally uniformly convergent
subsequence.

Definition 2.2. LetQ : Ĉ → Ĉ be a rational map of degree greater than 1. We denote the
nth iterate ofQ byQn, i.e.:

Qn = Q ◦Q · · · ◦Q︸ ︷︷ ︸
n times

.

The Fatou set is defined by

F(Q) = {z : ∃ a neighborhoodUz s.t. {Qn}∞n=1 is a normal family inUz}.

The Julia set is defined byJ = J(Q) = Ĉ\F(Q).

The Julia set has the following properties:

(i) The Julia set is a compact set.
(ii) The Julia set is a perfect set.

(iii) The Julia set is completely invariant underQ, i.e., for anyz ∈ J(Q) we haveQn(z) ∈
J(Q), n = 0,±1,±2, . . .
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Recently, more attention has been called for the study of measures and dimensions of
fractals; in particular fractals obtained from Julia sets[10]. One of the most famous measures
defined on the Julia set is called conformal measure. We first state the definition of conformal
measures defined on general compact measure spaces, then we specify it to Julia sets.

Definition 2.3. LetT : X → X be a continuous mapping of a compact metric space(X, ρ)

and leth : X → R be a non-negative measurable function. A Borel probability measureµ

onX is said to beh-conformal forT : X → X if

µ(T(A)) =
∫
A

hdµ

for any Borel setA ⊂ X such thatT |A is injective andT(A) is measurable. Such sets are
called special sets.

Let Q : Ĉ → Ĉ be a rational map. Since the Julia set,J(Q), is Q-invariant, we can
defineQ : J(Q) → J(Q).

Definition 2.4. Let t ≥ 0. Any |Q′|t-conformal measure forQ : J → J is called
t-conformal measure, i.e.:

µ(Q(A)) =
∫
A

|Q′|t dµ

for every special setA ⊂ J .

In order to motivate the definition of the conformal measure notice that ifJ(Q) = Ĉ andt =
2, then the normalized Lebesgue measure is 2-conformal. Even more, if thet-dimensional
Hausdorff measure is finite and positive on the Julia set, then the corresponding measure
is t-conformal[10]. In [11], Sullivan showed that for every rational function there exists
a conformal measure. In[4,5], a general scheme of constructing conformal measures was
found and applied to the case of Sullivan measures.

3. Continuous frames on Julia sets

Definition 3.1. Let (X,µ) be a locally compact measure space andH be an abstract sepa-
rable Hilbert space. The family of vectors

S = {|ηx〉|x ∈ X} ⊂ H
is said to form a frame inH if the operator:

F =
∫
X

|ηx〉〈ηx| dµ (3.1)

satisfies

A‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B‖φ‖2 for all φ ∈ H, (3.2)
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whereA andB are positive constants. IfA = B the setS is called a tight frame. If the
operatorF = I, the identity operator ofH, then the setS is said to give a resolution of the
identity. Note that ifX = Γ is a discrete set andµ is a counting measure, the operator(3.1)
takes the form

F =
∑
j∈Γ

|ηj〉〈ηj|. (3.3)

In the case whereX is partly discrete, the corresponding part ofµ could in general be a
weighted counting measure and(3.1) takes the form

F =
∑
j∈Γ ′

∫
X′

|ηx,j〉〈ηx,j| dν(x), (3.4)

whereX = X′ ∪ Γ ′,X′ is the continuous part with measureν andΓ ′ the discrete part with
a counting measure on it.

Let Q : Ĉ → Ĉ be a rational map andJ(Q) its corresponding Julia set. Letµ be a
conformal measure defined on the Julia set:

0<
∫
J

dµ(z) = M < ∞. (3.5)

We assume

A ≤ |Qm(z)|2 ≤ B for allm = 0,1,2, . . . and for allz ∈ J, (3.6)

whereA andB are positive constants.
Any separable Hilbert space,H, possesses an orthonormal basis. In this note,H is

an abstract separable Hilbert space and{φm}∞m=0 is an orthonormal basis ofH. In the
finite-dimensional Hilbert space case, an orthonormal basis is{φm}Nm=0, whereN is the
dimension of the Hilbert space.

Theorem 3.2. For z ∈ J let

|φz,m〉 = Qm(z)φm (3.7)

andS = {|φz,m〉|z ∈ J,m = 0,1,2, . . . }.
If condition(3.6) is satisfied, the setS constitute a frame inH. That is, the operator

F =
∞∑
m=0

∫
J

|φz,m〉〈φz,m| dµ(z)

satisfies

K‖φ‖2 ≤ 〈φ|Fφ〉 ≤ L‖φ‖2

for all φ ∈ H and some positive constantsK andL.
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Proof. We have

〈φ|Fφ〉 =
∞∑
m=0

∫
J

〈φ|φz,m〉〈φz,m|φ〉 dµ(z)

=
∞∑
m=0

∫
J

〈φ|Qm(z)φm〉〈Qm(z)φm|φ〉 dµ(z)

=
∞∑
m=0

∫
J

|Qm(z)|2〈φ|φm〉〈φm|φ〉 dµ(z). (3.8)

Thus

〈φ|Fφ〉 =
∞∑
m=0

∫
J

|Qm(z)|2|〈φ|φm〉|2 dµ(z). (3.9)

By (3.5), (3.6) and (3.9)we obtain

〈φ|Fφ〉 ≤ MB2
∞∑
m=0

|〈φ|φm〉|2 = MB2‖φ‖2 = L‖φ‖2

and

〈φ|Fφ〉 ≥ MA2
∞∑
m=0

|〈φ|φm〉|2 = MA2‖φ‖2 = K‖φ‖2.

This ends the proof. �

In the setting of signal processing,H is a Hilbert space of finite energy signals and
(J(Q),dµ) is a measure space of parameters. Every signal contains noise but the na-
ture and the amount of noise is different for different signals. In this context, choosing
(J(Q),dµ, {|φz,m〉}) amounts to selecting a part of the signal that we wish to isolate and
interpret, while eliminating a noise that has been deemed useless. In this process, what we
have done, in effect, is chosen a frame onH living in J(Q) (for details see[1]). Further, in
mathematical terms, a signal is a square integrable function. Thus one is allowed to chooseH
to beL2(J(Q),dµ) and{φm} to be an orthonormal basis of it. Since the construction works
on any separable Hilbert space, we do not articulate this point any further. InTheorem 3.2,
we have used the Julia set ofQ to build a flexible alternate, frame, for the orthonormal basis.

Remark 3.3. In the terminology of[2], the frames constructed inTheorem 3.2can be
named ascontinuous frames of infinite rank.

Now, we present examples of families of rational maps which satisfy assumption(3.5)
and henceTheorem 3.2. These examples are chosen as models which are well studied in
the literature[3,7,9]. From the above theorem, it is clear that any Julia setJ(Q) having the
propertyN0 ∩ J(Q) = ∅, whereN0 is a neighborhood of zero, admits a frame. Moreover,
the first example is chosen to give agoodframe (this point will be clarified later in the text).
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Example 3.4. LetQ(z) = eiαΠk
j=1(z− aj)/(1− ājz), where|aj| < 1 andaj is a complex

number forj = 1, . . . , k.Q(z) is known as Blaschke product. The following is well known
fact about the Julia sets of Blaschke products[9]:

The Julia set of a Blaschke product isS1 if and only if there existsz0 ∈ D such that
Q(z0) = z0, whereD is the unit disc andS1 the unit circle.

Thus, whenQ(z0) = z0 for somez0 ∈ D, Q(z) clearly satisfies assumption(3.6). For
the conformal measureµ, we take Lebesgue arc measure. Observe that, since we are on the
unit circle

|Qm(z)|2 = 1 and

∫
J

dµ(z) = 2π

under the assumed measure. Thus

〈φ|Fφ〉 = 2π‖φ‖2.

That is, we obtain a tight frame.

Fig. 1.Q(z) = z2 − 0.1 + 0.8i.
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Fig. 2.Q(z) = z2 − 1.

Example 3.5. The quadratic family,Q(z) = z2 + c, is the most famous family in holo-
morphic dynamics. Although it is the simplest non-linear example, it has very rich and
complicated dynamics. Its Julia set is always symmetric with respect to the origin and al-
ways contained within the circle|z| = 2. Replacingc by its conjugate has the effect of
reflectingJc through the horizontal axis[3,7,9]. Now, we give examples of Julia sets of the
quadratic family that satisfy(3.6).

The simplest case is whenc = 0, where the Julia set is the unit circle. Forc = −0.1+0.8i
the Julia set ofQ(z) is called theDouady Rabbit. The Julia set is symmetric with respect
to the origin which does not belong to the Julia set. Hence, we can draw a neighborhood
N0 around the origin and inside the Julia set which is bounded inside the circle|z| = 2 (see
Fig. 1).

Therefore, there are constantsA andB such that(3.6) is satisfied. Thus, we have frames
labeled by the iterates ofQ(z) in the sense ofTheorem 3.2. Another, interesting example
of the quadratic family isQ(z) = z2 − 1 where the Julia set has the shape of towers. This
case is similar to the Douady Rabbit case (seeFig. 2).

Now, we present an example of the quadratic family which does not satisfy condition
(3.6).

Example 3.6. Let Q(z) = z2 − 2. The Julia set of this function is the closed interval
[−2,2]. Here we cannot have a neighborhoodN0 of the origin such thatN0 ∩ J = ∅. Thus,
Q(z) = z2 − 2 does not satisfy the assumption ofTheorem 3.2.
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4. Resolution of the identity

In this section we obtain a resolution of the identity from frames. This procedure is
standard. We formulate it to our problem. From the frame condition(3.2), it is clear that
the frame operatorF , the resolution operator in the terminology of signal processing, is
bounded and has a bounded inverse.F allows us to decompose any vectorφ ∈ H as

Fφ =
∞∑
m=0

∫
J(Q)

〈φm,z|φ〉φm,z dµ(z).

However, in order to have a direct decomposition one prefers to have the operatorF to be
I, the identity operator onH.

Theorem 4.1. The operatorF of Theorem 3.2is a bounded invertible operator with a
bounded inverse. Furthermore, it is self-adjoint.

Proof. The boundedness and the boundedness of the inverse follows from the frame con-
dition. For the self-adjointness see[2]. �

Let us define a new class of states as follows:

|ηz,m〉 = F−1/2|φz,m〉 = |F−1/2φz,m〉. (4.1)

Let

Ω = {|ηz,m〉|z ∈ J,m = 0,1,2, . . . }.

Theorem 4.2. The setΩ gives a resolution of the identity.

Proof. SinceF is self-adjoint,F−1/2 is also self-adjoint. Consider

∞∑
m=0

∫
J

|ηz,m〉〈ηz,m| dµ(z)

=
∞∑
m=0

∫
J

|F−1/2φz,m〉〈F−1/2φz,m| dµ(z)

= F−1/2
∞∑
m=0

(∫
J

|φz,m〉〈φz,m| dµ(z)

)
F−1/2 = F−1/2FF−1/2 = I.

Thus, the collectionΩ gives a resolution of the identity. �

Let us answer the following question: is there a sequence{fm(z)}∞m=0 such that

|ηz,m〉 = fm(z)φm. (4.2)

Since

|ηz,m〉 = F−1/2|φz,m〉
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we have

〈φm|ηz,m〉 = 〈φm|F−1/2φz,m〉.
From which we get

fm(z) = Qm(z)〈φm|F−1/2φm〉. (4.3)

In the cases whereF−1/2 is explicitly known we can reduce(4.3) to a closed form.

5. Discrete frames on Julia sets

The practical implementation of any continuous scientific process requires a discretiza-
tion, all formulas must generally be evaluated numerically and a computer is intrinsically
a discrete object, even finite. For example, in signal processing, the practical use of the
wavelet transform requires the selection of a discrete set of points in the transform space.
But this operation must be done in such a way that no information is lost. This requirement
leads to the determination of a discrete frame[1]. In mathematical terms this reads: for
some general spaceX given a continuous frame{φx : x ∈ X} can one find a discrete set
of points{xj : j ∈ L ⊆ N} such that{φxj : j ∈ L} is a discrete frame, possibly with a
different frame operator[1]. In the following we present it to our case.

Let zj ∈ J(Q) for j = 0,1,2, . . . , K < ∞, thenQm(zj) ∈ J for all m = 0,1,2, . . .
andj = 0,1,2, . . . , K. Consider the set

SK = {|φm,j〉 = Qm(zj)φm : m = 0,1,2, . . . , j = 0,1,2, . . . , K}.
We assume

A ≤ |Qm(zj)|2 ≤ B, (5.1)

whereA,B are positive constants.

Theorem 5.1. Suppose(5.1) is satisfied. Then, the setSK is a frame. That is, the operator

F =
∞∑
m=0

K∑
j=0

|φm,j〉〈φm,j|

satisfies

A2K‖φ‖2 ≤ 〈φ|Fφ〉 ≤ B2K‖φ‖2.

Proof. Consider

〈φ|Fφ〉 =
∞∑
m=0

K∑
j=0

〈φ|φm,j〉〈φm,j|φ〉 =
∞∑
m=0

K∑
j=0

|Qm(zj)|2|〈φ|φm〉|2.
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Thus by(5.1)

〈φ|Fφ〉 ≤ B2
∞∑
m=0

K∑
j=0

|〈φ|φm〉|2 = B2K

∞∑
m=0

|〈φ|φm〉|2 = B2K‖φ‖2.

Again by(5.1)

〈φ|Fφ〉 ≥ A2
∞∑
m=0

K∑
j=0

|〈φ|φm〉|2 = A2K

∞∑
m=0

|〈φ|φm〉|2 = A2K‖φ‖2.

Hence,SK is a discrete frame. �

Example 5.2. In the examples of the previous section one could pick a finite number of
points from the Julia set.

In the above case the decomposition of a vectorφ ∈ H reads

Fφ =
∞∑
m=0

K∑
j=1

〈φm,z|φ〉φm,z. (5.2)

Once we have a frame, another question arises: howgoodis the frame? Here bygoodone
means the fastness of convergence of the series(5.2). For the general frame condition(3.2)
the quantity

ω = B − A

B + A

called the width or snugness of a frame, measures the fastness (in fact the tightness of the
frame). Ifω = 0 then the frame is tight. Thus a good frame meansω � 1 [1,2].

In our case

ω = B2K − A2K

B2K + A2K
= B2 − A2

B2 + A2

and

A ≤ |Qm(z)| ≤ B.

In Example 3.4it is possible to pickA andB very close. Thusω can be made arbitrarily
close to zero. In this case we have a good frame. The Julia set ofQ(z) = z2 + c, for a very
smallc, is a perturbed circle. The same is true in this case.

Theorem 5.3. If J is the Julia set of a Blaschke product, then for eachK ∈ N the setSK
constitute an orthonormal basis forH.

Proof. SupposeJ is the Julia set of a Blaschke product, thenA = B = 1, i.e.,SK is a
tight frame. Further

‖|φm,j〉‖2 = 〈Qm(zj)φm|Qm(zj)φm〉 = |Qm(zj)|2〈φm|φm〉 = 1.
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Therefore,‖|φm,j〉‖ = 1, for all m = 0,1, . . . , j = 1,2, . . . , K.
SinceA = B = 1 we have

‖|φm,k〉‖2 =
K∑
j=1

∞∑
n=0

|〈φn,j|φm,k〉|2 = ‖|φm,k〉‖4 +
∑
j �=k

∑
n�=m

|〈φn,j|φm,k〉|2.

Now by‖|φm,j〉‖ = 1, we get∑
j �=k

∑
n�=m

|〈φn,j|φm,k〉|2 = 0,

which implies

〈φn,j|φm,k〉 = 0 ∀ n �= m, j �= k.

Therefore,SK is an orthonormal set, further, sinceSK is a frame, it is total inH. �

6. Properties of Hilbert spaces and Julia sets

In this section, we investigate the possibility of obtaining some properties of a Hilbert
space from a Julia set and vice-versa.

Proposition 6.1. For eachN ∈ N, the set

SN =

ψz =

N∑
j=0

Qj(z)φj : z ∈ J

 (6.1)

is a closed subset ofH.

Proof. Let {ψzk }∞k=0 be a sequence inSN with a limit. Then

ψzk =
N∑
j=0

Qj(zk)φj.

Now

lim
k→∞

ψzk = lim
k→∞

N∑
j=0

Qj(zk)φj =
N∑
j=0

Qj( lim
k→∞

zk)φj.

Since{zk}∞k=0 ⊂ J andJ is compact, there existz0 ∈ J such that limk→∞ zk = z0. We get

lim
m→∞ ψzk =

N∑
j=0

Qj(z0)φj = ψz0 ∈ SN.

ThusSN is closed. �
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Remark 6.2. Since for anyz1, z2 ∈ J andα, β ∈ C there may not be az3 such that

αQj(z1)+ βQj(z2) = Qj(z3).

ThereforeSN , in general, is not a subspace.

Corollary 6.3. For any finiten ∈ N, the set

S1 =
n⋃
τ=1

SNτ =

ψz,τ =

Nτ∑
j=0

Qj(z)φj : z ∈ J, τ = 1,2, . . . , n




is a closed subset ofH.

Proposition 6.4. For eachN,M ∈ N, the set

SNM =

ψz =

M∑
m=0

N∑
j=0

Qj(z)φm : z ∈ J

 (6.2)

is a closed subset ofH.

Proof. The proof follows from the proof ofProposition 6.1. �

Corollary 6.5. For any finiten,m ∈ N, the set

S3 =
n⋃
τ=1

m⋃
ν=1

SNτMν

=

ψz,τ,ν =

Nτ∑
j=0

Mν∑
l=0

Qj(z)φl : z ∈ J, τ = 1,2, . . . , n, ν = 1, . . . , m




is a closed subset ofH.

Proposition 6.6. For eachN ∈ N let

J
f−→SN g−→R

by

f(z) = ψz and g(ψz) = 〈ψz|ψz〉 =
N∑
m=0

|Qj(z)|2.

Thenf is one-to-one, onto and continuous, g is continuous and

g ◦ f(z) =
N∑
m=0

|Qj(z)|2

is continuous.
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Proposition 6.7. LetQ, J, f andSMN as before. Then, the following diagram:

(6.3)

commutes, wherefQ(ψz) = ψz′ andz′ = Q(z) ∈ J .

Proof. Since

ψQ(z) = ψz′ =
N∑
j=1

M∑
m=0

Qj(z′)φm ∈ SMN,

diagram(6.3)commutes. �

7. Brain imaging and wavelets

In recent years, wavelets have been constructed on 2-spheres and shown to be of central
importance in many applications such as geographical data, atmospheric data, the illumina-
tion algorithms in computer graphics and medical problems of sphere-like structured organs
[6,12]. A 2-sphere can be obtained by rotating a circle. The Julia set ofQ(z) = z2 + c, for
a very smallc, is a perturbed circle. If we rotate this perturbed circle we obtain a perturbed
sphere which can be made arbitrarily close to any human brain by changing the value ofc.

In case, one arrive to obtain a wavelet basis on these perturbed spheres, it will be very
useful in the study of brain imaging. Our frame construction on Julia sets may eventually
pave a way to construct such wavelet bases.
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